بررسی (فرکانس های VHF) فرکانس بسیار بالا و قابلیت در کشف اهداف پنهان راداری
نویسنده: افشین رشید
فرکانس هایی که در دسته وی-اچ-اف (VHF ) قرار می گیرند از قابلیت بالایی در کشف اهداف پنهان کار برخوردارند .
فرکانس خیلی بالا ( Very High Frequency) به امواج بین ۳۰ مگا هرتز تا ۳۰۰مگاهرتز گفته میشود. این دسته از فرکانسها با مدولاسیون فرکانس در امواج رادیویی شهری استفاده میشود.
امواج رادیویی بسته به طول موج خود توسط انواع مختلفی از فرستنده ها تولید می شوند. این امواج می توانند توسط ستاره ها، جرقه ها و رعد و برق ها نیز ایجاد شوند و به همین دلیل است که تداخل امواج رادیویی را در هنگام طوفان و رعد و برق احساس می کنید.
در بین طیف الکترومغناطیسی، امواج رادیویی کم ترین فرکانس (بزرگ ترین طول موج) را دارند و بیش ترین استفاده از این امواج در ارتباطات و مخابرات است.
باند VHF در فرکانسهای 40 مگاهرتز تا 68 مگاهرتز قرار دارد. کانالهای 1 تا 4 در این باند میباشند و پهنای فرکانس هر کانال در این باند 7 مگاهرتز در نظر گرفته شده است.
باند VHF III یا B III در فرکانسهای 174 مگاهرتز تا 230 مگاهرتز قرار دارد. کانالهای 5 تا 12 در این باند میباشند و پهنای فرکانس هر کانال در این باند 7 مگاهرتز در نظر گرفته شده است.
کاربرد و عملکرد VHF
در کل فرکانس VHF اغلب به عنوان " باند رادیویی به طور گسترده ای در تلویزیون، رادیو FM، تلفن همراه، پیجر، دستگاه سهام اطلاعات، ارتباطات مایکروویو و رادار استفاده می شود.
انواع انتشار امواج رادیویی در فضای آزاد، تا به زمان و محدودیت های جغرافیایی، صلیب فرکانس های کف و، بدون محدودیت و مقررات، به ناچار تولید تعامل، به طوری که استفاده از امواج رادیویی در جهان به یک نیاز یکنواخت، به طوری که تعامل بین آنها به حداقل برسد.
بررسی ابعاد اصلی نانو آنتن رِکتنا Rectenna و مجموعه نانو سیستم های مخابراتی _ الکتریکی رِکتنا Rectenna
پژوهشگر و نویسنده: افشین رشید
نکته: ابعاد آنتن و مجموعه نانو سیستم یا نانو سنسور، فرکانس کاری، تلفات توان، محدوده و ابعاد شبکه سنسوری، ساختار و امکانات سیستم تغذیه و بستر فیزیکی ارتباطی بین بخش های مختلف یک سیستم نانو، عوامل و پارامتر های عمده ای هستند که هر یک به نوعی تعیین کننده بوده و قابلیت ساخت و عملکرد سیستم نهایی را تعیین می نمایند.
شبکه نانو یک شبکه ارتباطی در مقیاس نانو بین دستگاه های نانو است. دستگاه های نانو به دلیل محدودیت در توانایی پردازش مدیریت توان ، در عملکرد ها با چالش های خاصی روبرو هستند . از این رو انتظار می رود این دستگاه ها کار های ساده ای را انجام دهند که نیاز به رویکرد های متفاوت و جدید دارد.در سیستم مخابرات مولکولی، فرستنده اطلاعات را توسط مولکول های شیمیایی به نام مولکول های اطلاعاتی ارسال نموده و بعد از انتشار در محیط، توسط گیرنده مخابراتی دریافت و کُد گشایی می گردد.شبکه ای از نانو ذرات ارتباطی می تواند منطقه ی وسیعتر را پوشش داده و پردازش های شبکه ای بیشتری را انجام دهد. به علاوه تکنولوژی های نانو مخابراتی متعددی وجود دارند که نیاز به استفاده از تحریک و اندازه گیری خارجی برای کار کردن دارند.ارتباط بی سیم بین نانو شبکه و دیوایس ها و تجهیزات میکرو و ماکرو می تواند این نیاز را برآورده سازد.
در حالت کلی جهت دریافت موج الکترومغناطیسی موجود در فضا، باید ابعاد آنتن در مرتبه ای از اندازه طول موج ورودی به سطح آن باشد. با توجه به ابعاد بسیار پایین نانو سنسور ها، نانو آنتن ها برای اینکه قابل استفاده باشند لازم است که فرکانس کاری بسیار بالا باشد. استفاده از گرافن تا حد زیادی به حل این مشکل کمک می کند. سرعت انتشار امواج در CNT ها و GNR ها می تواند تا 100 برابر کمتر از سرعت آن در خلا باشد و این مساله به ساختار فیزیکی، دما و انرژی دارد. بر این اساس فرکانس تشدید نانو آنتن های مبتنی بر گرافن می تواند دو مرتبه کمتر از نانو آنتن های مبتنی بر مواد نانو کربنی باشد. از نظر ریاضی و تئوری ثابت شده است که نانو تیوب کربنی شبه فلزی می تواند وقتی که یک ولتاژ متغیر با زمان به طرفین آن اعمال شود تابش های تراهرتزی داشته باشد. با وجود امکانات ساخت نانو لوله ها با طول چند سانتی متر، امکان ساخت هادی های الکتریکی با نسبت طول به عرضی از مرتبه 7^10 وجود دارد. آنتن های نانو لوله ای در نگاه اول این تصور را به ما میدهد که مشابهی از آنتن دیپل است که در ابعاد کوچک طراحی شده است. اما در واقع چنین نیست در تئوری اصلی آنتن های دیپل برای تعیین توزیع جریان روی آنتن، که شعاع دیپل نسبت به عمق پوستی بزرگتر است و همچنین تلفات مقاومتی آنقدر کم است که قابل چشم پوشی می باشد.
بررسی و تحلیل نانو آنتن های نوری (یک راه حل عملی با راندمان بالا نسبت به سایر فناوری ها)
پژوهشگر و نویسنده: افشین رشید
نکته :از آنجایی که استفاده از نانو آنتن های نوری برای جمع آوری انرژی خورشیدی ارائه دهنده یک راه حل عملی با راندمان بالا نسبت به سایر فناوری های فتوولتاییک رایج مثل پنل های خورشیدی است، منجر به توسعه سریع درصنعت نانو و مواد نوری شده است.
هنگامی که موج الکترومغناطیسی خورشیدی به سطح نانو آنتن برخورد میکند یک جریان متغیر با زمان روی سطح نانوآنتن ایجاد شده و در نتیجه ولتاژی در محل شکاف تغذیه آن تولید می شود.آنتن وسیله ای است که میتواند موج الکترومغناطیسی موجود در فضا رادریافت کند .جهت ریافت موج الکترومغناطیسی خورشیدی توسط آنتن باید ابعاد آنتن در مرتبه ای از اندازه طول موج ورودی به سطح آن باشد، لذا جهت دریافت تابش های خورشیدی که طول موج های ناحیه فروسرخ،مرئی و فرابنفش را شامل میشوند به آنتنی با ابعاد نانومتر نیاز است .از آنجایی که استفاده از نانو آنتن های نوری برای جمع آوری انرژی خورشیدی ارائه دهنده یک راه حل عملی با راندمان بالا نسبت به سایر فناوری های فتوولتاییک رایج مثل پنل های خورشیدی است، منجر به توسعه سریع درصنعت نانو و مواد نوری شده است.
یک نانو آنتن نوری با پالریزاسیون خطی و طول 2/λ که پهنای باند نسبی 11 %دارد، قادر به جمع آوری حدود pW 75.2 خواهد بود.برای همین مشخصات در صورت استفاده از آنتن با پالریزاسیون دوبل،توان pW 5.5 حاصل خواهد گردید. با توجه به پایین بودن توان دریافتی هر نانو آنتن مستقل،استفاده از آرایه های آنتی در این سلول مرسوم می باشد که قوانین و روشهای خاص خود را نیز دارد.آنتن وسیله ای است که میتواند موج الکترومغناطیسی موجود در فضا رادریافت کند .جهت دریافت موج الکترومغناطیسی خورشیدی توسط آنتن باید ابعاد آنتن در مرتبه ای از اندازه طول موج ورودی به سطح آن باشد، لذاجهت دریافت تابش های خورشیدی که طول موج های ناحیه فروسرخ،مرئی و فرابنفش را شامل میشوند به آنتنی با ابعاد نانومتر نیاز است .از آنجایی که استفاده از نانوآنتن های نوری برای جمع آوری انرژی خورشیدی ارائه دهنده یک را ه حل عملی با راندمان بالا نسبت به سایر فناوری های فتوولتاییک رایج مثل پنل های خورشیدی است، منجر به توسعه سریع در صنعت نانو و مواد نوری شده است.
نتیجه گیری :
از آنجایی که استفاده از نانو آنتن های نوری برای جمع آوری انرژی خورشیدی ارائه دهنده یک راه حل عملی با راندمان بالا نسبت به سایر فناوری های فتوولتاییک رایج مثل پنل های خورشیدی است، منجر به توسعه سریع درصنعت نانو و مواد نوری شده است.
بررسی و کاربرد رادارهای پالسی با قدرت تفکیک بالا (High Resolution)
نویسنده : افشین رشید
در این رادارها عرض پالسی بسیار کوچک انتخاب می شود و چون میزان دقت در تشخیص فاصله توسط عرض پالسی مشخص می گردد دارای دقت بالایی در تشخیص فاصله هدف می باشد. (هر قدر عرض پالس کوچکتر باشد محاسبه فاصله دقیقتر است.) این رادارها برای آشکار سازی اهداف ساکن در حضور کلاتر (سیگنالهای برگشتی ناخواسته به صفحه رادار) و نیز تشخیص یک هدف در میان چند هدف نزدیک به هم قابل استفاده می باشد.در مواردی یک سیستم رادار دارای بیش از یک فرستنده و گیرنده می باشد که به صورت پالسی خوانده می شود. یک شبکه عمل می کنند. این سیستم P8F ها مولتی استاتیک پالسی، راداری است که به طور همچنین رادارها را می توان براساس سیگنال ارسالی آنها دسته بندی کرد. نوع CWP9F پیوسته و معمولا با دامنه ثابت ارسال می کند. این سیگنال ارسالی می تواند با مدولاسیون FM و یا با فرکانسی ثابت فرستاده شود. هنگامی که شکل موج ارسالی به صورت پالسی است ( بامدولاسین FM و یا بدون آن) ، رادار پالسی P و غیر فعالP1F نامیده میشود. همچنین بر اساس وجود فرستنده یا نبود آن، رادارها بترتیب به دو دسته فعال P10FP تقسیم می شوند.
بر اساس وظیفه اصلی ای که بر عهده رادار است رادارهای آشکارساز P12FP ،جست و جوگر P13F ردیاب ، P14F PP و غیره P15FP را می توان نام برد.
اهداف رادار دارای انواع گوناگون است که عامل مجزا کننده آنها متفاوت است . ساده ترین نوع آن که هدف تعریف می شود هدفی است که بزرگترین بعد فیزیکی آن کوچکتر از حداقل طولی است که پالس ارسال شده بدون مدولاسیون FM قادر به اندازه گیری آن است. این مقدار دقت رادار در اندازه گیری طول را مشخص می کند و برای رادار مونواستاتیک برابر با cT می باشد. T طول پالس ارسالی است. در حضور مدولاسیون FM این مقدار برابر با 2c/2B است که B پهنای باند موج ارسالی می باشد. به علت کوچک بودن این اهداف پخش شدگی ای در زمان در پالسهای بازگشتی رخ نمی دهد و شکل موج بازگشتی تغییر چندانی نمی کند. پالسی نامیده می شوند. این اهداف در پالس های دریافتی اهدافی که اندازه آنها بزرگتر از اهداف نقطه ایست، اهداف وسیعP17Fدریافتی پخش شدگی ایجاد می کنند که بازده کار رادار را کاهش می دهد. در نظر گرفتن یک هدف به عنوان هدف وسیع نیز به پهنای باند بستگی دارد. P شمرده می شوند، مانند جنگل، زمین، کوهها و غیره که به این نوع اهداف اهداف بزرگتر جزو اهداف P18F گستردهP هم گفته می شود. دسته دیگری از اهداف پخش را اهداف حجمیP20F اهداف ناحیه ایP19FP می نامند که شامل باران، برف، ابر، ابر، مه و غیره می باشد .
بررسی و تحلیل سیگنال ها ؛ انواع و تفاوت در سیگنال ها
نویسنده : افشین رشید
-
-
سیگنال ها اغلب توابع سطری از زمان هستند (سهمی شکل)، ولی ممکن است به صورت توابع ستونی نیز یافت شوند و نیز ممکن است توابعی از هر متغیر مستقل مربوطه دیگری باشند. این مفهوم بسیار گستردهاست و تعریف دقیق آن بسیار دشوار. مفاهیم مربوط به رشتههای زیر مجموعه، مشترک میباشد برای مثال در تئوری اطلاعات یک سیگنال پیغام کد دار شدهای است که این همان ترتیب حالتها در یک کانال ارتباطی است که پیغام را دربر میگیرد. در یک سیستم ارتباطی یک منتقل کننده پیغام را به سیگنال تبدیل میکند که این پیغام از طریق کانال ارتباطی به گیرنده میرسد.این سیگنال از طریق سیمها به تلفن گیرنده منتقل میشود و در آنجا به صداها تبدیل میشود. سیگنالها را میتوان به روشهای گوناگون دسته بندی کرد. عمدهترین تفاوت بین فضاهای گسسته و پیوسته این است که توابع بر روی آنها تعریف میشوند.
سیگنال های گسسته و پیوسته
به عنوان مثال بازه زمانی گسسته و پیوسته. سیگنالهای دارای زمان پیوسته را نیز اغلب حتی زمانی که توابع سیگنال پیوسته نیستند سیگنالهای پیوسته مینامند و مثال آن سیگنال موج مربعی است. تفاوت عمده دیگر بین سیگنالها از لحاظ ارزش گسسته یا پوسته آنها است.
سیگنالهای دیجیتال دارای ارزش گسستهاند ولی به طور نامشهودی از روند فیزیکی دارای ارزش پیوستهای به دست میآیند.
سیگنالهای دیجیتال و آنالوگ
به طور غیر رسمی تر از تفاوتهای تئوری که در بالا به آن اشاره کردیم و به طور عملی به دو نوع سیگنال بر میخوریم که یکی دیجیتال و دیگری آنالوگ نام دارد. به طور مختصر تفاوت آنها این است که سیگنالهای دیجیتال گسسته و کمیت گذاری شده هستند در حالی که سیگنالهای آنالوگ هیچ یک از این دو خصوصیت را ندارند.
مثالهایی از سیگنالها
محدوده: یک سیگنال حرکتی یک بعدی است (زمان)، و بازه آن عموماً سه بعدی است. بنابراین موقعیت آن به صورت یک سیگنال سه ستونی است به همین ترتیب موقعیت و جایگیری آن در نار هم به صورت یک سیگنال ۶ ستونی است.