بررسی رادار سِرچ های رَهگیر (Radar search) نحوه عملکرد و کاربرد در (علوم مخابرات)

نویسنده: افشین رشید

کاربرد اصلی یک رادار رهگیر که گاهاً از آن به عنوان رادار کنترل آتش نیز استفاده می‌شود تهیه‌ی مختصات سه بعدی زاویه عمودی، افقی و فاصله از هدف است. این اطلاعات جهت شلیک صحیح گلوله‌های واحد توپخانه یا موشک‌های هدایت شونده ضروری است.پس از تعیین مختصات تقریبی یک هدف توسط رادار جست‌وجو (سرچ) و مشخص شدن آن به عنوان واحد متخاصم اطلاعات دو بعدی هدف شامل برد و زاویه افقی در اختیار واحد کنترل آتش قرار می‌گیرد و در این حین رادار دقیق‌تر یعنی رادار رهگیر شروع به جست‌وجوی حول مختصات تقریبی می کند تا اطلاعات دقیق هدف را کسب نماید. رادار جست و جو به کمک یک پرتو بادبزنی شکل (باریک در افق پهن در فراز) شروع به جست‌وجوی 360 درجه‌ای محیط می کند و پس از کشف تقریبی مکان هدف، آنرا به رادار کنترل آتش واگذار می‌کند، در این حین رادار رهگیر یا کنترل آتش به کمک یه پرتو نوک مدادی (باریک در افق و فراز) مکان دقیق هدف را استخراج می‌نماید.

دقت رادار رهگیر (Radar search)


دقت رادار رهگیر ارتباط تنگاتنگی با باریک بوودن هرچه بیشتر پرتو نوک مدادی دارد البته ذکر این نکته ضروری است که باریکی بیش از حد پرتو ممکن است باعث گریز هدف از دید رادار و عدم اکتشاف آن گردد.
در رادارهای جست‌وجوی جدید این امکان فراهم گردید که اطلاعات سه بعدی تقریبی هدف استخراج گردد که این امر به رهگیری هرچه سریعتر هدف می‌انجامد. البته در برخی سامانه‌ها رادار رهگیر و جست وجو در واقع یک رادار هستند و پس از استخراج اطلاعات سه بعدی تقریبی هدف سامانه وارد حالت رهگیر می‌شود و پس از استخراج اطلاعات مکانی هدف انرا در اختیار واحد آتش قرار می‌دهد.
دقت مورد نیاز برای یک رادار رهگیر تا اندازه‌ی زیادی به ماهیت ذاتی واحد درگیر شونده دارد به عنوان مثال یک سامانه توپخانه‌ای انرژی جنبشی با نواخت پایین به مراتب به دقت بالاتری نیاز دارد تا یک واحد موشکی مجهز به موشک‌های هدایت شونده با سرجنگی ترکش شونده یا یک توپ گتلینگ مسلح به گلوله‌های مجهز به فیوز.


چند رادار در این سامانه مشاهده می‌شود؟ تفاوت هریک در چیست؟
دو عامل مهم دقت رادارهای رگیری را تحت تاثیر قرار می‌دهد: یکی عوامل ذاتی که به ماهیت و نوع سامانه‌ی راداری بستگی دارد و دیگری عامل خارجی که به ماهیت هدف و نیز وضعیت آب و هوایی بستگی دارد. در حال حاضر انواع متعددی از رادارهای رهگیری در دسترس قرار دارند که دقت، پیکربندی و قیمت آنها متفاوت است. از مهم‌ترین رادارهای رهگیری رادار اسکن نوک مدادی است که در ادامه به تشریح آن می‌پردازیم.

رادار اسکن نوک مدادی (مخروطی) سیگنال سینوسی

در این نوع رادار جهت پرتو برابر با جهت دید رادار نیست و پرتو حول نقطه‌ی تقریبی هدف به چرخش در می‌آید. نام گذاری این نوع رادار از آنجایی نشأت می‌گیرد که دارای پرتویی نوک مدادی شکل چرخند حول محل تقریبی هدف است. زمانی که هدف در نقطه‌ای حول محور پرتو چرخنده باشد توان بازتابیده از آن ثابت خواهد بود (نه ماکزیمم). زمانی که هدف در نقطه‌ی مشخص شده باشد توان بازتابیده از آن به صورت متناوب و مناسب با فرکانش اسکن مخروطی (بسته به سرعت چرخش پرتو) تغییر خواهد کرد.
زمانی که پرتو بازتابیده از هدف دارای بیشترین توان بود محور مرکزی پرتو دقیقا به سمت هدف تابانده شده است با توجه به موارد یادشده و پردازش سیگنال بازتابیده از هدف می‌توان اطلاعات مکانی هدف را به طور دقیق استخراج کرد.
چرخش پرتو ممکن است به صورت مکانیکی یا الکترونیکی باشد. در حالت چرخش مکانیکی زاویه محور مرکزی آنتن به دقت و توسط موتورهای سروو حرکت داده می‌شود.
نوع دیگری از رادارهای اسکن مخروطی نیز وجود دارد که به آنها رادارهای اسکن مخروطی منحصر به گیرنده (Conical scan on receive only (COSRO)) گوییم. در این نوع رادارها فرستنده ثابت بوده و پرتو مخروطی تولید می‌کند و این آنتن گیرنده است که با چرخش خود در جهت‌های مختلف توان‌های مختلف بازتابیده از هدف را دریافت کرده مکان هدف را استخراج می‌کند.


برچسب‌ها: امواج, آنتن ها, علوم مخابرات, الکترونیک
نوشته شده توسط افشین رشید در جمعه بیست و سوم شهریور ۱۴۰۳

بررسی دسیبل یا (db) در اندازه گیری و توان قدرت سیگنال ها و فرکانس های (مخابراتی -ارتباطی_ ماهواره ای)

نویسنده : افشین رشید

.

امواج الکترومغناطیس ماده نیستند بلکه صورتی از انرژی هستند که از ترکیب میدان های الکتریکی ومغناطیسی عمود برهم درست شده اند ودرجهت عمود بر صفحه تشکیل شده از این دو میدان انتشار می یابند .

مقادیر و معادلات بر اساس dB در تمام فعالیتهای حرفه ای که در آنها مباحث انتشار رادیویی بررسی میشوند، قدرت سیگنالها، بهره ها و اتلافها عمدتا به شکل dB بیان میشوند. بدین ترتیب میتوانیم از شکل dB معادلات که استفاده از آنها راحتتر از شکاعادی معادلات است استفاده کنیم.

هر عددی که به شکل dB بیان میشود لگاریتمی است و این امر بدان معناست که ما به راحتی میتوانیم اعدادی را که مقدار آنها چند مرتبه با یکدیگر متفاوت است به راحتی با هم مقایسه کنیم. برای راحتی ما اعدادی را که به شکل غیر dB بیان میشوند را «خطی» مینامیم تا بتوانیم آنها را از شکل لگاریتمی dB اعداد متمایز کنیم. اعداد بیان شده بر حسب dB دارای این مزیت هستند که کار کردن با آنها بسیار راحت است:
- برای ضرب کردن اعداد خطی، لگاریتمهای آنها را با هم جمع کنیم.
- برای تقسیم کردن اعداد خطی، لگاریتمهای آنها را از هم کم میکنیم.


- برای محاسبه توان n ام یک عدد خطی، لگاریتم آن را بر n ضرب میکنیم.
- برای محاسبه ریشه n ام یک عدد خطی، لگاریتم آن را بر n تقسیم میکنیم.
برای اینکه بیشترین استفاده را از این تسهیلات ببریم، باید اعداد را در همان مراحل اولیه به شکل dB بنویسیم و در مراحل نهایی آنها را به شکل خطی برگردانیم (در صورت نیاز). در بیشتر حالتها در مراحل نهایی نیز جوابها به شکل dB باقی میمانند.

درک این مطلب مهم است که هر عددی که بر حسب dB بیان میشود باید به صورت یک نسبت باشد (که به صورت لگاریتم در آمده است). مثالهای معمول آن بهره تقویت کننده ها و آنتنها و اتلاف در مولدها یا انتشارهای رادیویی است.


برچسب‌ها: امواج, آنتن ها, علوم مخابرات, الکترونیک
نوشته شده توسط افشین رشید در جمعه شانزدهم شهریور ۱۴۰۳

بررسی سیگنال ها ؛ انواع و تفاوت در سیگنال ها

نویسنده : افشین رشید

-

-

سیگنال ها اغلب توابع سطری از زمان هستند (سهمی شکل)، ولی ممکن است به صورت توابع ستونی نیز یافت شوند و نیز ممکن است توابعی از هر متغیر مستقل مربوطه دیگری باشند. این مفهوم بسیار گسترده‌است و تعریف دقیق آن بسیار دشوار. مفاهیم مربوط به رشته‌های زیر مجموعه، مشترک می‌باشد برای مثال در تئوری اطلاعات یک سیگنال پیغام کد دار شده‌ای است که این همان ترتیب حالت‌ها در یک کانال ارتباطی است که پیغام را دربر می‌گیرد. در یک سیستم ارتباطی یک منتقل کننده پیغام را به سیگنال تبدیل می‌کند که این پیغام از طریق کانال ارتباطی به گیرنده می‌رسد.این سیگنال از طریق سیم‌ها به تلفن گیرنده منتقل می‌شود و در آنجا به صداها تبدیل می‌شود. سیگنال‌ها را می‌توان به روش‌های گوناگون دسته بندی کرد. عمده‌ترین تفاوت بین فضاهای گسسته و پیوسته این است که توابع بر روی آن‌ها تعریف می‌شوند.

سیگنال های گسسته و پیوسته
به عنوان مثال بازه زمانی گسسته و پیوسته. سیگنال‌های دارای زمان پیوسته را نیز اغلب حتی زمانی که توابع سیگنال پیوسته نیستند سیگنال‌های پیوسته می‌نامند و مثال آن سیگنال موج مربعی است. تفاوت عمده دیگر بین سیگنال‌ها از لحاظ ارزش گسسته یا پوسته آنها است.
سیگنال‌های دیجیتال دارای ارزش گسسته‌اند ولی به طور نامشهودی از روند فیزیکی دارای ارزش پیوسته‌ای به دست می‌آیند.

سیگنال‌های دیجیتال و آنالوگ
به طور غیر رسمی تر از تفاوت‌های تئوری که در بالا به آن اشاره کردیم و به طور عملی به دو نوع سیگنال بر می‌خوریم که یکی دیجیتال و دیگری آنالوگ نام دارد. به طور مختصر تفاوت آنها این است که سیگنال‌های دیجیتال گسسته و کمیت گذاری شده هستند در حالی که سیگنال‌های آنالوگ هیچ یک از این دو خصوصیت را ندارند.



مثال‌هایی از سیگنال‌ها

  • حرکت. – حرکت جزئی در میان قسمتی از فضا را می‌توان یک سیگنال در نظر گرفت و یا می‌توان آن را به کمک یک سیگنال نشان داد.

محدوده: یک سیگنال حرکتی یک بعدی است (زمان)، و بازه آن عموماً سه بعدی است. بنابراین موقعیت آن به صورت یک سیگنال سه ستونی است به همین ترتیب موقعیت و جایگیری آن در نار هم به صورت یک سیگنال ۶ ستونی است.

  • صوت. -از آنجایی که صدا ناشی از لرزش یک واسطه‌است (مانند هوا) یک سیگنال صوتی و به هر ارزشی اززمان و سه بعد مکان یک ارزش فشار نیز می‌افزای. یک میکروفن فشار صوت را در یک مکان تنها به تابعی از زمان تبدیل می‌کند. این کار با استفاده از یک سیگنال ولتاژ به عنوان آنالوگی از سیگنال صوتی انجام می‌شود.
  • لوح‌های فشرده: . cdها شامل سیگنالهای منقطعی هستند که نشان دهنده صوت اند و در هر ثانیه ۴۴ هزار و صد نمونه از آنها ضبط می‌شود هر نمونه شامل اطلاعاتی برای کانالهای چپ و راست است که می‌توان آن را به عنوان سیگنال ۲ ستونی در نظر گرفت (از آنجایی که CDها به صورت استریو ضبط می‌شوند.
  • تصاویر. تصاویر یک تصویر به علاوه تمام ارزش‌های ذکر شده دارای یک ارزش رنگی نیز می‌باشد ازآنجایی که نقاط مربوط به این ارزش‌ها بر روی یک صفحه قرار می‌گیرند محدوده آن دو بعدی می‌باشد اگر تصویر یک جسم فیزیکی باشد برای مثال یک نقاشی سیگنالی پیوسته به حساب میآید اگر تصویر یک عکس دیجیتال باشد یک سیگنال منقطع به شمار می‌آید. غالبا راحت تر است که یک رنگ را به صورت جمعی از شدت‌های سه رنگ اصلی در نظر بگیریم تا سیگنال دارای ارزش ستونی و بعد سه گانه شود.
  • ویدئو. ویدئوها (فیلم‌ها) یک سیگنال ویدئویی ترکیبی از تصاویر است یک نقطه از یک ویدئو براساس موقعیتش و زمانی که در آن واقع شده مشخص می‌شود. (۲ بعدی) بنابراین یک سیگنال ویدئویی دارای محدوده سه بعدی است. ویدئوی آنالوگ دارای محدوده بعدی پیوسته‌است (در طول خط اسکن) و دارای دو بعد ناپیوسته یا منقطع است (۴ چوب و خط).
  • پتانسیل های قشایی
  • زیست شناختی پتانسیل‌های قشایی. ارزش این سیگنال یک پتانسیل الکتریکی مستقل است (ولتاژ) تعیین محدوده این سیگنال بسیار دشوار است. برخی سلول‌ها و یا اجزاء به طور کلی دارای پتانسیل غشایی یکسانی هستند، نورون‌ها عموماً در نقاط مختلف پتانسیل‌های مختلف دارند این سیگنال‌ها دارای انرژی‌های بسیار کمی هستند ولی برای راه اندازی سیستم عصبی کافی هستند ولی می‌توان میزان آنها را به کمک تکنیک‌های الکتروفیزیولوژی اندازه گیری کرد.

برچسب‌ها: امواج, آنتن ها, علوم مخابرات, الکترونیک
نوشته شده توسط افشین رشید در یکشنبه چهارم شهریور ۱۴۰۳

بررسی امواج رادیویی و تقسیم بندی باند ها و فرکانس ها (انواع فرکانس ها و سیگنال ها)

نویسنده : افشین رشید

ارتباطات به وسیله امواج رادیویی، برپایه قوانین فیزیک و انرژی امواج الکترومغناطیسی استوار است. بدین منظور برخی مفاهیم اولیه مربوط به این موضوع را به اجمال از نظر می‌گذرانیم.

همه ما تاکنون عباراتی نظیر UHF, VHF, AM, FM و … را شنیده‌ایم. فضای اطراف ما آکنده از امواج رادیویی است که در تمام جهات در حال انتشار و عبور و مرور می‌باشند. اصولا یک موج رادیویی یک موج الکترومغناطیسی می‌باشد که معمولا توسط آنتن منتشر می‌گردد. امواج رادیویی دارای فرکانس‌های مختلفی هستند، که برحسب کاربری مطابق با استانداردهایی تقسیم‌بندی شده‌اند.

امواج رادیویی در هوا با سرعتی نزدیک به سرعت نور انتقال می‌یابند. این امر یکی از مهم‌ترین مزایای این فناوری می‌باشد که نقش بسزایی در تسریع ارتباط به عهده دارد.

واحد اندازه ‌گیری فرکانس رادیویی hertz “هرتز” یا “سیکل بر ثانیه” است و برای فرکانس‌های بزرگ‌تر، جهت خواندن و نوشتن از عباراتی مانند KHz “کیلوهرتز”، MHz “مگا هرتز” و … استفاده می‌شود. در جدول تقسیم بندی فرکانس‌ها برحسب واحد آمده است.

امواج رادیویی دارای فرکانس‌ها و باندهای مختلفی هستنتد، به وسیله یک گیرنده مخصوص رادیویی شما می‌توانید، امواج مربوط به همان گیرنده را دریافت نمایید. برای مثال زمانی که شما مشغول گوش دادن به یک ایستگاه رادیویی هستید، گوینده فرکانس 91.5 MHz و باند FM را اعلام می‌کند. رادیوی FM شما تنها می‌تواند گستره فرکانسی تخصیص یافته مربوط به خود را دریافت نماید.

Wavelength یا طول موج یک سیگنال الکترومغناطیسی با فرکانس یا بسامد آن رابطه معکوس دارد، بدین معنی که بالاترین فرکانس کوتاه ‌ترین طول موج را دارا می‌باشد . در کل سیگنال‌های با طول موج‌های بلند تر مسافت بیشتری را می‌پیمایند و از قابلیت نفوذ بهتری در میان اجسام در برابر سیگنال‌های دارای طول موج کوتاه برخوردارند.

جدول باندهای فرکانسی

مخفف باندهاگستره فرکانستقسیماتنمادها

b.mam( 3-30) KHzامواج۱۰ هزارمتریVLF

b.km(30-300) KHzامواج کیلومتریLF

b.hm(300-3000) KHzامواج هکتامتریFM

b.dam(3-30) MHzامواج دکامتریHF

b.m(30-300) MHzامواج متریVHF

b.dm(300-3000) MHzامواج دسیمتریUHF

b.cm(3-30) GHzامواج سانتیمتریSHF

b.mm(30-300) GHzامواج میلیمتریEHF

3000GHz-300امواج دسیمیلیمتر

دردسته بندی امواجی که قبلا ذکر شد هر گروه کاربردهای خاص خود را دارد در زیر برخی از آنها آمده است :

۱-متحرک هوانوردی

۲-ناوبری رادیویی

۳- آماتور

۴-آماتور ماهواره ای

۵-پخش همگانی صدا

۶- متحرک خشکی

۷-متحرک دریایی

۸- هواشناسی ماهواره ای

۹-تعیین موقعیت رادیویی و ماهواره ای

۱۰-تحقیقات فضایی

۱۱-پخش تصاویر تلویزیونی

و غیره… که خود نیز دارای دسته بندی هستند.

یک موج رادیویی یک موج الکترومغناطیسی است که میتواند بوسیله یک آنتن انتشار یابدوهمانطور که میدانید امواج رادیویی فرکانسهای متفاوتی دارند یکی از سوالهای ابتدایی شما ممکن است این باشد که چرا برخی از امواج و فرکانسهایی که حتی بر روی یک باند مشترک منتشر می شوندمثلا باند “F M” چرا بوسیله رادیوهای گیرنده خانگی قابل دریافت نمی باشند؟
پاسخ این است که گیرنده خانگی شما فقط میتواند باندهاوفرکانسهایی را که کارخانه سازنده از پیش برای آن تعیین کرده و مثلا برای موج FM بین megahertz 88 تا megahertz 108 می باشد را دریافت نماید.

در زیر بخشی از کاربردهای این امواج با ذکر محدوده فرکانسی آمده است:

رادیوهای AM از 535 کیلو هرتز تا 1.7MHz

رادیوهای موج کوتاه: 509 MHz تا 26.1 MHz

رادیوهای باند شهری: 26.96MHz تا 27.41MHz

رادیوهایFM از 88 تا 108MHz

و برخی تقسیمات جزئی‌تر عبارتند از:

سیستم‌های دزدگیر، دربازکن بدون سیم پارکینگ و … : در حدود 40MHz

تلفن‌های بدون سیم متداول: در حدود 40 MHz الی 50 MHz

هواپیماهای مدل کنترلی: در حدود72MHz

ماشین‌های اسباب‌بازی رادیو کنترلی: درحدود 75MHz

گردنبند ردیابی حیوانات: 215MHz الی 220MHz

تلفن‌های سلولی (مانند موبایل):824MHz الی 849MHz

تلفن‌های جدید بدون سیم: در حدود 900MHz

سیستم‌های موقعیت‌یاب ماهواره‌ای: 1.227 MHz الی 1.577 MHz

تعداد دیگری از دسته بندیهای فرکانسی را مشاهده مینمایید:

AM radio: 535 kilohertz to 1.7 megahertz
Short wave radio: bands from 5.9 megahertz to 26.1 megahertz
Citizens Band (CB) radio: 26.96 megahertz to 27.41 megahertz
Television stations: 54-88 megahertz for channels 2-6
FM radio: 88 megahertz to 108 megahertz
Television stations: 174-220 megahertz for channels 7-13
Garage do Garage door openers, alarm systems, etc.: around 40 megahertz
Standard cordless phones: Bands from 40 to 50 megahertz
Baby monitors: 49 megahertz
Radio controlled airplanes: around 72 megahertz, which is different from…
Radio controlled cars: around 75 megahertz
Wildlife tracking collars: 215 to 220 megahertz
MIR space station: 145 megahertz and 437 megahertz
Cell phones: 824 to 849 megahertz
New 900 MHz cordless phones: Obviously around 900 megahertz!
Air Traffic Control radar: 960 to 1,215 megahertz
Global Positioning System: 1,227 and 1,575 megahertz
Deep space radio communications: 2290 megahertz to 2300 megahertz

Global Positioning System: 1,227 and 1,575 megahertz
New 900 MHz cordless phones: Obviously around 900 megahertz!

Air Traffic Control radar: 960 to 1,215 megahertz
Deep space radio communications: 2290 megahertz to 2300 megahertz


برچسب‌ها: امواج, آنتن ها, علوم مخابرات, الکترونیک
نوشته شده توسط افشین رشید در یکشنبه چهارم شهریور ۱۴۰۳

بررسی عملکرد و ساختار (رادارهای مونواستاتیک Monostatic)

نویسنده : افشین رشید

نکته : فرکانس هایی که در دسته وی-اچ-اف (VHF ) قرار می گیرند از قابلیت بالایی در کشف اهداف پنهان کار برخوردارند .

رادارهای مونواستاتیک Monostatic
رادارهایی که فرستنده و گیرنده‌ی آنها در یک نقطه واقع است را مونواستاتیک می‌نامیم. در واقع فاصله‌ی بین گیرنده و فرستنده در ای رادارها بسیار کوچکتر از فاصله نقطه‌ی استقرار رادار نسبت به هدف است لذا فرستنده و گیرنده یک فضای یکسان را پوشش می‌دهند. در اغلب موارد فرستنده و گیرنده‌ی رادار مونواستاتیک در یک سامانه تعبیه شده و از یک آنتن استفاده می‌کنند. جداسازی دو مود کاری گیرندگی و فرستندگی در این رادارهایی که از یک آنتن گیرنده فرستنده استفاده می کنند توسط واحدی به نام سلول گیرنده/فرستنده یا T/R cellیا داپلکسر Duplexer صورت می‌گیرد. این سلول وظیفه دارد در حالت فرستندگی ورودی گیرنده را بلوکه کند. در این رادارها به کمک اندازه‌گیری زمان رفت و برگشت سیگنال و ضرب آن در سرعت حرکت موج (سرعت نور) فاصله هدف استخراج می‌شود. همچنین سرعت هدف را می‌توان به کمک خاصیت شیفت داپلر فرکانس اکو هدف محرک تشخیص داد.

کاربرد و کارکرد رادارهای مونواستاتیک

رادار جستجو و نظارت هوایی مونواستاتیک با برد نسبتاً بالا و دو بعدی و همچنین با برد در حدود 300 کیلومتر و سه بعدی و نمونه ای با قابلیت مقابله با جنگ الکترونیک تا 360 کیلومتر و انواعی از رادارهای پسیو است. فرکانس هایی که در دسته وی-اچ-اف قرار می گیرند از قابلیت بالایی در کشف اهداف پنهان کار برخوردارند .

گفتنی است رادارهایی که در آن فرستنده و گیرنده یکی هستند مونواستاتیک، آنهایی که فرستنده و گیرنده در دو نقطه متفاوت و فاصله دار هستند بایاستاتیک و مجموعه هایی با چند گیرنده و چند فرستنده جدا از هم مولتی استاتیک گفته می شود.گفتنی است یکی از روش های پنهان کاری رادار استفاده از سطوح زاویه دار یا منحنی در بدنه هواگرد به طوری است که بازتابش امواج به محل فرستنده برنگردد. با استفاده از رادارهایی با فرستنده و گیرنده فاصله دار که در محل های متفاوتی نصب شده اند، بازتاب های حاصله از هواگرد رادار گریز توسط گیرنده ای دیگر دریافت شده و در نتیجه هدف کشف می شود.


برچسب‌ها: امواج, آنتن ها, علوم مخابرات, الکترونیک
نوشته شده توسط افشین رشید در پنجشنبه یکم شهریور ۱۴۰۳